Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens
نویسندگان
چکیده
The aim of this research was to isolate and characterize bacteria from spores of arbuscular mycorrhizal fungi (AMF). We designated these bacteria 'probable endobacteria' (PE). Three bacterial strains were isolated from approximately 500 spores of Gigaspora margarita (Becker and Hall) using a hypodermic needle (diameter, 200 μm). The bacteria were identified by morphological methods and on the basis of ribosomal gene sequences as Bacillus sp. (KTCIGM01), Bacillus thuringiensis (KTCIGM02), and Paenibacillus rhizospherae (KTCIGM03). We evaluated the effect of these probable endobacteria on antagonistic activity to the soil-borne plant pathogens (SBPPs) Fusarium oxysporum f. sp. lactucae MAFF 744088, Rosellinia necatrix, Rhizoctonia solani MAFF 237426, and Pythium ultimum NBRC 100123. We also tested whether these probable endobacteria affected phosphorus solubilization, ethylene production, nitrogenase activity (NA), and stimulation of AMF hyphal growth. In addition, fresh samples of spores and hyphae were photographed using an in situ scanning electron microscope (SEM) (Quanta 250FEG; FEI Co., Japan). Bacterial aggregates (BAs), structures similar to biofilms, could be detected on the surface of hyphae and spores. We demonstrate that using extraction with an ultrathin needle, it is possible to isolate AMF-associated bacterial species that are likely derived from inside the fungal spores.
منابع مشابه
Antagonistic Potential of Mycorrhiza Associated Pseudomonas Putida against Soil Borne Fungal Pathogens
Mycorrhizal spores were found to be closely associated with bacteria on their spore wall surface known as mycorrhiza associated bacteria (MAB) and its play a major role in the plant growth promotion by production of many known and unknown metabolites, nutrient solubilization and suppression of many soil borne pathogens in rhizosphere of crop plants. The present study was carried out to understa...
متن کاملPhylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria.
Many physicochemical and biotic aspects of the soil environment determine the community composition of bacteria. In this study, we examined the effects of arbuscular mycorrhizal fungi, common symbionts of higher plants, on the composition of bacterial communities after long-term (7-8 years) enrichment culture in the presence of a plant host. We showed that the phylogeny of arbuscular mycorrhiza...
متن کاملThe Arbuscular Mycorrhizal Symbiosis: Origin and Evolution of a Beneficial Plant Infection
Arbuscular mycorrhizal fungi (AMF) represent a monophyletic fungal lineage (Glomeromycota) that benefits terrestrial ecosystems worldwide by establishing an intimate association with the roots of most land plants: the mycorrhizal symbiosis. This relationship results in an improved acquisition of nutrients (e.g., phosphate and nitrates) from the soil by the plant partners and, in exchange, allow...
متن کاملSpecies of plants and associated arbuscular mycorrhizal fungi mediate mycorrhizal responses to CO2 enrichment
It has been suggested that enrichment of atmospheric CO2 should alter mycorrhizal function by simultaneously increasing nutrient-uptake benefits and decreasing net C costs for host plants. However, this hypothesis has not been sufficiently tested. We conducted three experiments to examine the impacts of CO2 enrichment on the function of different combinations of plants and arbuscular mycorrhiza...
متن کاملIndigenous Arbuscular Mycorrhizal Fungal Assemblages Protect Grassland Host Plants from Pathogens
Plant roots can establish associations with neutral, beneficial and pathogenic groups of soil organisms. Although it has been recognized from the study of individual isolates that these associations are individually important for plant growth, little is known about interactions of whole assemblages of beneficial and pathogenic microorganisms associating with plants.We investigated the influence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2012